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We present a study of the rheological and optical behaviour of Kramers bead–rod
chains in dilute solution using stochastic computer simulations. We consider two
model linear flows, steady shear and uniaxial extensional flow, in which we calculate
the non-Newtonian Brownian and viscous stress contribution of the polymers, their
birefringence and a stress-optic coefficient. We have developed a computer algorithm
to differentiate the Brownian from the viscous stress contributions which also avoids
the order (δt)−1/2 noise associated with the Brownian forces. The strain or shear
rate is made dimensionless with a molecular relaxation time determined by simulated
relaxation of the birefringence and stress after a strong flow is applied. The charac-
teristic long relaxation time obtained from the birefringence and stress are equivalent
and shown to scale with N2 where N is the number of beads in the chain.

For small shear or extension rates the viscous contribution to the effective viscosity
is constant and scales as N. We obtain an analytic expression which explains the
scaling and magnitude of this viscous contribution. In uniaxial extensional flow we
find an increase in the extensional viscosity with the dimensionless flow strength up
to a plateau value. Moreover, the Brownian stress also reaches a plateau and we
develop an analytic expression which shows that the Brownian stress in an aligned
bead–rod chain scales as N3. Using scaling arguments we show that the Brownian
stress dominates in steady uniaxial extensional flow until large Wi, Wi ≈ 0.06N2,
where Wi is the chain Weissenberg number. In shear flow the viscosity decays as
Wi−1/2 and the first normal stress as Wi−4/3 at moderate Wi. We demonstrate that
these scalings can be understood through a quasi-steady balance of shear forces with
Brownian forces. For small Wi (in shear and uniaxial extensional flow) and for long
times (in stress relaxation) the stress-optic law is found to be valid. We show that
the rheology of the bead–rod chain can be qualitatively described by an equivalent
FENE dumbbell for small Wi.

1. Introduction
The configurations of deformed polymer molecules in dilute solutions subject to

flow manifest themselves in measurable quantities such as rheological coefficients and
optical anisotropy. Understanding the polymer physics of these dilute solutions in
simple flows is crucial in order to develop molecular models and constitutive equations
which can subsequently be implemented for more complex flows and geometries.

Some of the earliest theoretical developments in equilibrium polymer physics in-
volved polymer models constructed from spherical beads connected by rigid rods,
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i.e. bead–rod chains (Flory 1989). Kuhn (1934) and Guth & Mark (1934) showed
that the probability distribution function for the separation of the chain ends for
‘phantom’ bead–rod chains is a Gaussian. Using statistical thermodynamics it can
be shown (Treloar 1975) that the force required to increase the chain end-to-end
separation is proportional to the end-to-end separation, i.e. the entropic force behaves
as a Hookean spring for small deformations. For larger deformations Kuhn & Grun
(1942) showed that the entropic force is given by the inverse Langevin function.
These entropic forces derived from the bead–rod model are the fundamental starting
point for most bead–spring models, where the spring represents the entropic force.
Bead–spring dumbbell models have been studied extensively and have been useful
in developing constitutive equations for polymer solutions (Bird et al. 1987; Doi &
Edwards 1986; Larson 1988).

Until recently, the rheology of the bead–rod model has received relatively little
attention due to the complexities associated with the constraints. Hassager (1974)
was the first to examine the bead–rod model in steady uniaxial extensional flow.
Hassager developed asymptotic expansions in the Péclet number, Pe, for the polymer
extensional viscosity at small and large Pe and performed numerical calculations for
three-bead chains. He showed that the polymer extensional viscosity increases by a
factor of N, where N is the number of beads in the chain, from a low-Pe plateau to
a high-Pe plateau.

Hinch (1976a) developed a theory for a continuous flexible string to examine the
dynamics of a non-Brownian flexible fibre in shear flow. Hinch found that the chain
would quickly orient in the flow direction and snap straight due to the tensions arising
from the shear flow. Hinch (1976b) later examined the effect of weak Brownian motion
on the flexible string via a diffusion equation in Fourier space. He found that the
shortening of the end-to-end chain separation in linear flows depended on the degree
of discretization which must be truncated to avoid an ‘ultra-violet catastrophe’. The
divergence occurs because each discretization imparts additional degrees of freedom
to the chain thus increasing the entropic force. The concept is similar to the Debye
theory for the heat capacity of crystals (McQuarrie 1973) where the atomic nature of
the crystal must be included to truncate the highest frequency attainable in a crystal.
In the bead–rod polymer model the cut-off also occurs due to molecular rigidity and
the cut-off length scale is dictated by the rod size or Kuhn step. Thus the bead–rod
model is simply a discretized form of the flexible string model considered by Hinch
where the number of rods corresponds to the degree of discretization as well as a
measure of the chain rigidity.

Ryckaert, Ciccotti & Berendsen (1977) developed two methods to handle rigid con-
straints in a molecular dynamics simulation to ensure that the inter-bead separation
is a constant to within a specified tolerance at the end of a time step. The first is
a method later implemented by Liu (1989) and the second is the well-known shake

algorithm (Allen & Tildesley 1987).
The bead–rod model has been helpful in understanding polymer dynamics in

transient strong flows and the molecular basis for viscous stress. Simulations by
Acierno, Titomanlio & Marrucci (1974) and by Rallison & Hinch (1988) of non-
Brownian bead–rod chains in transient uniaxial flow showed that large viscous stresses
can be attributed to the unfolding of back loops which prevent the chain from moving
affinely with the flow. Recognizing that the unfolding of the back loops in the previous
three-dimensional simulations can be well characterized by a one-dimensional non-
Brownian string, Larson (1990) developed a novel ‘ kink dynamics’ algorithm. Due
to the simplicity of his model, he was able to simulate large chains (N = 400) and
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showed that the viscous stress scales with R3
end where Rend is the chain end-to-end

distance. Recently Hinch (1994b) performed Brownian dynamics simulations of bead–
rod chains and kink dynamics simulations in strong extensional flow. He suggests that
the stress is mainly viscous and scales with R4

g/N where Rg is the radius of gyration
of the chain.

The rheological properties of short (N 6 20) bead–rod chains in steady flows
were examined by Liu (1989). He applied the constraint algorithm of Ryckaert et
al. (1977) to the Brownian dynamics of bead–rod chains and demonstrated that the
resulting algorithm is consistent with the Fokker–Planck equation for a bead–rod
chain in kinetic theory (Bird et al. 1987). He confirmed the asymptotic expansions of
Hassager (1974) for uniaxial extensional flow and in simple shear flow he found a
shear-thinning polymer viscosity and first normal stress coefficient. Xu, Kim & Pablo
(1994) performed similar calculations for a bead–rod chain with excluded volume
and anisotropic friction in steady flows. The excluded volume tends to expand the
configuration of the chain giving rise to a larger polymer shear viscosity and first
normal stress coefficient. Anisotropic friction gives rise to a small negative second
normal stress coefficient.

Grassia & Hinch (1996) have recently examined the stress relaxation of an initially
straight bead–rod chain via Brownian dynamics. They employ a simulation algorithm
developed by Grassia, Hinch & Nitsche (1995) which accounts for variable diffusivity
and also includes pseudo-potential forces to convert the statistics from a rigid link
system to an infinitely stiff bead–spring system (Hinch 1994a). Grassia & Hinch also
develop a modified stress calculation to correctly calculate the Brownian stresses.
They find O

(
N3
)

Brownian stresses for a straight chain decaying exponentially at

long times with an O
(
1/N2

)
rate.

The previous work, with the exception of Grassia & Hinch (1996), either neglected
or underestimated the polymer Brownian stresses. Our work differs substantially from
that of Grassia & Hinch (1996) in that we consider birefringence, the effect of flow
and the partitioning of the polymer stress into viscous and Brownian components
which is crucial in the development of a constitutive equation for the polymer stress.
Xu et al. (1994) did examine bead–rod chains in steady shear and extensional flow, but
they did not differentiate the Brownian from the viscous stress, nor did they determine
the long-time chain relaxation scaling which is necessary to express results in terms of
the chain Weissenberg number Wi. Moreover, they did not attempt to calculate the
optical properties of the chains, or determine universal scalings for the rheological
material functions. Additionally, since we calculate the polymer optical anisotropy
and stress, we can test the validity of the stress-optic law for bead–rod chains. This
is fundamentally important since in many experiments it is assumed a priori that the
stress tensor is proportional to the index of refraction tensor (Ramanathan, Headley
& Lai 1995).

In this paper we present simulations of the rheological and optical properties of
a dilute suspension of bead–rod chains in two model linear flows: simple shear and
uniaxial extensional flow. The dimensionless flow strengths are characterized by a
simulated Weissenberg number, Wi. The Brownian and viscous contributions to the
polymer stress are explicitly calculated. In addition, the anisotropic polymer index of
refraction and the stress optic coefficient for the chain are also calculated.

First, in §2 the bead–rod polymer model is developed in terms of a discretized
continuous string neglecting inter-bead hydrodynamic and excluded volume interac-
tions. The various forces acting on the chain, namely constraint, hydrodynamic and
Brownian, produce a stochastic differential equation containing stochastic Brownian
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forces which must be interpreted in the Stratonovich sense (Gardiner 1985) in order
to derive the Fokker–Planck equation corresponding to this model (Öttinger 1994).
The Stratonovich interpretation of the stochastic terms will also be important in our
polymer stress calculations described in §5.

In §3 the Brownian dynamics numerical simulation technique is discussed. The
stochastic simulation of polymer models with rigid links is more complex than bead–
spring simulations due to the constraint on the link length. Ermak & McCammon
(1978) showed that the gradient of the diffusivity tensor must be incorporated into a
Brownian dynamics algorithm when the diffusivity of a bead in the model depends
on the chain configuration. Another way to account for the variable diffusivity is
to use a second-order-time step algorithm (Fixman 1978; Grassia et al. 1995). Liu
(1989) implemented the iterative simulation technique of Ryckaert et al. (1977) for
bead–rod chains to ensure a constant link length at the end of a time step. We show
in §3 that this algorithm is consistent with a second-order-time step algorithm and
has the added benefit of ensuring that the link length is constant at all times. In §4
we non-dimensionalize the problem with the appropriate scalings.

The polymer contribution to the stress in a suspension and two methods of
calculating it are discussed in §5. The first, the Giesekus form of the stress tensor,
involves calculating the time derivative of a tensor as a function of bead position.
This is not possible in our stochastic simulation because the chain trajectories are
not smooth in time due to the Brownian forces (Gardiner 1985). The Giesekus stress
tensor is convenient for steady-state results since it is only a function of the bead
positions and the velocity gradient tensor. The second formulation for the polymer
stress is based on the Kramers–Kirkwood stress tensor (Bird et al. 1987). In its
usual form the Kramers–Kirkwood stress tensor contains O(δt−1/2) fluctuations due
to the O(δt−1/2) Brownian forces that are often larger than the stress itself. Using the
Stratonovich interpretation of the Brownian force we develop a technique to filter out
the O(δt−1/2) fluctuations while capturing the correct O(1) correlations in the stress
tensor. This second form of the stress tensor can be used to calculate the transient
and steady-state polymer stress.

In §6 we discuss the Brownian and viscous contributions to the polymer stress and
how to explicitly calculate them in a stochastic simulation. We study the simplest
bead–rod chain, a rigid dumbbell, where the stress tensor is a simple function of the
dumbbell orientation and the flow deformation tensor (Bird et al. 1987) to illustrate
the nature of the Brownian and viscous stress, and as a check on our stress calculation
technique. Lastly, we derive an expression for the limiting value for the Brownian
stress corresponding to a fully extended chain of N beads which is shown to scale
with N3.

The optical anisotropy of a flowing suspension due to the presence of aligned
polymer chain segments and the applicability of a stress-optic law for a bead–rod
chain is discussed in §7.

In §8 we present results for the simulated relaxation of chains from an initial
stretched configuration to their equilibrium configuration. The polymer birefringence,
stress and stress-optic coefficient are calculated as the chains relax. The long-time
stress and birefringence decay are fitted to a single exponential to yield a characteristic
relaxation time, λ1, for the chain. The relaxation time is then used to rescale the bead
Pe to a chain Wi.

The steady-state rheology and optical properties of bead–rod chains in simple
shear flow are discussed in §9. The material properties of the chains are separated
into three separate regions of Wi having distinct dynamics. For small Wi, the viscous
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contribution to the shear viscosity is linear in N and an analytic expression is
calculated by considering a chain composed of independent dumbbells. For moderate
Wi, the polymer viscosity and first normal stress coefficient show power-law behaviour
and collapse onto universal curves when plotted versus Wi. A power law for the
polymer viscosity is derived by balancing the shear forces tending to stretch the
chain with the entropic Brownian forces causing the chain to collapse into a compact
configuration. The thinning of the polymer viscosity and first normal stress coefficient
at moderate Wi are almost entirely due to the Brownian contributions, while the
viscous contributions are relatively constant until large Wi where they show a slight
increase before thinning. The stress-optic coefficient is relatively constant for small
Wi and the magnitude agrees with that calculated from the relaxing chains in §8. The
stress-optic law begins to fail for moderate Wi (Wi > 3) due to Brownian stresses
which are a function of the correlated orientation of many rods.

In §10 the steady-state rheology and optical properties of a bead–rod chain in
uniaxial extensional flow are discussed. We expand upon the early kinetic theory de-
velopments of Hassager (1974) for three-bead chains or trumbells in steady potential
flow and develop integral expressions for the total, viscous and Brownian extensional
viscosity which are subsequently evaluated numerically. Our kinetic theory results
show excellent agreement with our stochastic simulations. We show that the asymp-
totic expressions in Pe developed by Hassager (1974) for the polymer extensional
viscosity at small and large Pe show universal scaling behaviour when expressed in
terms of Wi. Thus we predict a narrow but finite region of Wi where the polymer vis-
cosity increases to its maximum value. We find that the initial increase in the viscosity
with increasing Wi is mostly Brownian for large chains. This is explained by using the
asymptotic expressions of Hassager and the O(N3) Brownian stresses predicted for a
straight chain derived in §6. Lastly, the stress-optic coefficient is constant for small
Wi and has the same magnitude as in the shear simulations in §9 and the relaxation
simulations of §8.

Finally, in §11 we compare the bead–rod chain to the FENE dumbbell model. First
we review the derivation of the FENE force law starting from a bead–rod chain.
The average force required to hold the two ends of a bead–rod chain at a given
separation is compared to the FENE force law and the inverse Langevin function.
We find that a 10-bead chain is sufficient to recover the universal force-extension
curve. Thereafter, we compare our simulations of FENE dumbbells in steady shear
and uniaxial extensional flow to a bead–rod chain with 100 beads.

2. The polymer model
In our study, the polymer is modelled as a bead–rod chain, where the beads act

as sources of friction and the rods serve as constraints to hold successive beads at a
constant relative distance. The thermodynamics of a bead–rod chain with rigid-rod
connectors is different than of a chain containing very stiff rods (Hinch 1994a). We
have chosen to simulate rigid connectors so that we may utilize a rigorous simulation
technique developed by Liu (1989) and so that we may compare to the kinetic theory
results of Hassager (1974). Furthermore, the rheology of a bead–rod chain with rigid
connectors is not significantly different than that of a chain with stiff connectors: the
Brownian stress when the chain is fully aligned does not differ, the zero shear viscosity
does not differ (Bird et al. 1987), and we have performed simulations to show that
the viscous contribution to the zero shear viscosity only differs by less than 1%.

A bead–rod chain is completely analogous to a discretized flexible inextensible
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string in which the size of the discretization corresponds to the rod size in the
bead–rod model. We shall refer to the flexible inextensible string model to guide the
development of our governing equations. The connecting rods physically correspond
to Kuhn steps and thus they act as the smallest rigid length scale in the model. By
increasing the number of beads in a chain of constant length we will decrease the Kuhn
length relative to the chain length – in effect making the chain more flexible. With
this model, the chain dynamics can be described by a stochastic diffusion equation
(Liu 1989; Öttinger 1994; Grassia & Hinch 1995), and one can compute sample
trajectories of the chain. These trajectories represent a sampling of the configuration
space of the chain. To derive the governing equations we consider the form of all the
forces in the system: hydrodynamic, constraint, and Brownian.

The hydrodynamic force on a bead is assumed to be linear in the slip velocity
between the bead and the solvent velocity at the bead centre, if the inertia of the fluid
is neglected. Thus,

F
h,ν
i = −ξij(ṙνj − u∞j (rνj )), (2.1)

where ξij is a general drag or resistance tensor, ṙνj is the velocity of bead ν and u∞j (rνj )
is the undisturbed solvent velocity. In our studies we limited ourselves to linear flows
where the shear rate, γ̇, or extension rate, ε̇, rate is defined by

∂ u∞i
∂xj

=

{
κij γ̇ shear flow
κij ε̇ extensional flow,

(2.2)

and κij is defined by:

κij =

{
δi1δj2 shear flow
δi1δj1 − 0.5δi2δj2 − 0.5δi3δj3 extensional flow.

(2.3)

Note that we have neglected any hydrodynamic interactions between the beads. In
addition, all simulations discussed in this paper were performed with an isotropic
drag tensor

ξij = δij 6π µ b = δij ξ (2.4)

where b is the bead radius. We have also completed simulations employing an
anisotropic drag tensor to account for the anisotropic drag that occurs on a slender
continuous body. These simulations were more computationally expensive and were
not qualitatively different.

The constraint forces were derived by considering the chain to be a discretized
flexible inextensible string. The constraint force per unit length in a string is equal to
the gradient in the tension (Hinch 1976a):

fci (s) =
∂[T (s)ρi(s)]

∂s
, (2.5)

where ρi(s) is a unit vector tangent to the string and s is the arclength variable. By
integrating (2.5) over the length of a single rod, it follows that the discrete constraint
force acting on bead ν takes the form

F
c,ν
i = Tνuνi − Tν−1uν−1

i , (2.6)

where Tν is the tension in the νth rod of length a and orientation uνi = (rν+1
i − rνi )/a.

The rods are thus a discrete means of representing the internal forces associated
with a flexible inextensible body. The same constraint forces can be derived using the
method of undetermined Lagrange multipliers (Allen & Tildesley 1987).

During a time step the polymer experiences numerous collisions with the solvent
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molecules. Neglecting the effects due to the constraints (to which we shall return in
due course), these Brownian forces are approximated as a δ-correlated, white-noise
process (Gardiner 1985) such that

〈Fbr,νi (t)〉 = 0, (2.7)

〈Fbr,νi (t)Fbr,µj (t′)〉 = 2kTξ δνµ δij δ(t− t′), (2.8)

where δνµ and δij are Kronecker delta tensors and δ(t− t′) is the Dirac delta function.
The 2kTξ-term results from satisfying the fluctuation dissipation theorem in the
absence of constraints (Russel, Saville & Schowalter 1989).

A discrete form for the Brownian forces during an individual time step beginning
at time t and ending at time t + δt is therefore

〈Fbr,νi (τ)〉 = 0, (2.9)

〈Fbr,νi (τ)Fbr,µj (τ)〉 =
2kTξ δνµ δij

δt
, (2.10)

where τ is equal to t + ς δt. We note that when the Brownian forces are included
in this manner, they have a magnitude proportional to (δt)−1/2 and the sample
trajectories will be continuous but the time derivative of the paths (or the velocity)
will be discontinuous. The value of the dimensionless parameter ς depends on the
interpretation of the stochastic process and can take values from 0 to 1 (Gardiner 1985;
Öttinger 1995). Setting ς equal to 1/2 corresponds to a Stratonovich interpretation
(Gardiner 1985; Liu 1989) of the stochastic term. This interpretation is necessary to
derive the correct corresponding Fokker–Planck equation from the stochastic equation
(Liu 1989; Öttinger 1994). This is equivalent to stating that the Brownian forcing
occurs throughout the time step and thus the beginning and end must be equally
weighted.

3. Numerical simulation
Care must be taken to construct a valid simulation algorithm when rigid constraints

are employed. A simple first-order time-stepping algorithm is inadequate due to the
variable effective diffusivity of the beads (Ermak & McCammon 1978). Additionally,
the inter-bead distance is not held constant with a non-iterative scheme. Liu (1989)
proposed an iterative simulation technique to constrain the inter-bead distance within
a specified tolerance. Liu demonstrated the equivalence of his numerical algorithm to
a corresponding Fokker–Planck equation. In our studies we have used Liu’s numerical
algorithm to produce sample chain trajectories. We shall show that Liu’s algorithm is
equivalent to a mid-point scheme, and thus correctly accounts for variable diffusivity
(Grassia et al. 1995).

Neglecting chain inertia, the forces on the beads sum to zero,

F
br,ν
i + F

c,ν
i + F

h,ν
i = 0. (3.1)

Expressing the hydrodynamic force in terms of the bead and solvent velocity, equation
(3.1) can be rewritten as

ṙνi (t+ δt/2) =
1

ξ

[
F
ν,br
i (t+ δt/2) + F

ν,c
i (t)

]
+ u∞i (rνi (t)). (3.2)

In (3.2) the bead velocity is evaluated at time t + δt/2 due to the Stratonovich nature
of the Brownian force. Evaluating the hydrodynamic forces at time t results in an
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order (δt)1/2 error and simplifies the calculations. The directions of the constraint
forces are evaluated at time t but their magnitude is determined by satisfying the
constraints at t+ δt/2. The beads are subject to the constraint

uνi
(
t+ δt/2

)
uνi
(
t+ δt/2

)
− 1 = 0, (3.3)

and the time derivative of (3.3) becomes

u̇νi
(
t+ δt/2

)
uνi
(
t+ δt/2

)
= 0. (3.4)

Thus a link must have a velocity perpendicular to its orientation in order to maintain
a constant length. The link orientation at time t + δt/2 can be approximated by a
mid-point algorithm. Liu’s iterative algorithm, based on the constraint

uνi (t+ δt)uνi (t+ δt)− 1 = 0, (3.5)

correctly satisfies the constraints while also rigorously maintaining a constant bead
separation. This can be rewritten as[

u̇νi (t+ δt/2) δt+ uνi (t)
] [

u̇νi (t+ δt/2) δt+ uνi (t)
]
− 1 = 0, (3.6)

u̇νi (t+δt/2)δt
[
u̇νi (t+ δt/2)δt+ uνi (t)

]
+uνi (t) u̇

ν
i (t+δt/2) δt+uνi (t) u

ν
i (t)−1 = 0, (3.7)

u̇νi (t+ δt/2)
[
uνi (t+ δt) + uνi (t)

]
= 0. (3.8)

Approximating uνi (t+ δt/2) as [uνi (t+ δt) + uνi (t)]/2 gives

u̇νi
(
t+ δt/2

)
uνi
(
t+ δt/2

)
= 0. (3.9)

Thus constraining the rod size to be a constant at the end of a time step ensures that
the velocity of a link at t+δt/2 is perpendicular to its orientation, which is consistent
with a mid-point algorithm.

We conclude this section with a brief overview of the integration scheme used in
our simulations, while a more thorough description can be found in Liu (1989). At
the beginning of each time step an unconstrained move, denoted by t∗, is made:

rνi (t
∗) = rνi (t) +

[
u∞i (rνi (t)) +

F
br,ν
i

ξ

]
δt. (3.10)

The bead positions are subject to the constraint

[rν+1
i (t+ δt)− rνi (t+ δt)] [rν+1

i (t+ δt)− rνi (t+ δt)]− a2 < ϕ, (3.11)

where ϕ is small and rνi (t+ δt) is given by

rνi (t+ δt) = rνi (t
∗) +

[
Tνuνi − Tν−1uν−1

i

ξ

]
δt. (3.12)

Combining equations (3.10), (3.11) and (3.12) leads to N − 1 nonlinear equations for
the tensions. The nonlinear term is small relative to the linear terms and thus the
N − 1 linear equations can be solved iteratively (Liu 1989). Two iterations of the
equations are equivalent, to leading order in δt, to a mid-point algorithm.

To begin the simulation a random-walk polymer configuration is generated by
choosing successive bead positions from random vectors distributed over the surface
of a sphere. We realize that the equilibrium configuration of a rigid bead–rod system
is not a random walk (Kramers 1946; Hassager 1974; Hinch 1994a), but it is a quick
initial approximation and we can allow the chain to equilibrate for 105 to 5 × 106



Dynamic simulation of flexible polymers 259

steps during which the solvent velocity, u∞i is set to zero. After the equilibration
period the chains are in their thermodynamic equilibrium state. Thereafter, u∞i is
introduced at its desired value. We assume ergodicity to obtain steady-state averages
from time averages of a single chain taken over 107 to 108 time steps. For transient,
or time-dependent results, actual ensemble averages are taken of 500 to 4000 chains.
The size of the time step per simulation depends on the Péclet number and flow type.

4. Dimensions
We non-dimensionlize the problem by scaling lengths with the inter-bead separation

a, forces with the thermal scale kT/a and time with ξa2/kT . The dimensionless
parameter that arises from this scaling is a bead Péclet number. The Péclet number,
Pe= γ̇ξa2/kT (or ε̇ξa2/kT ), is the ratio of the time for a bead to freely diffuse a
distance a to the flow time scale 1/γ̇ (or 1/ε̇). A bead–rod chain has a spectrum of
relaxation times, with ξa2/kT being on the order of the fastest relaxation time. The
slowest relaxation time, defined as λ1(N) ξa2/kT , can be used to define a Weissenberg
number, Wi = λ1(N)γ̇ξa2/kT , which is a measure of the chain relaxation made
dimensionless with the flow time scale. We will calculate λ1(N) in our simulations
discussed in §8 and thereafter we will present our results using both Pe and Wi.

5. Stress tensor
Calculating the stress contribution from the polymer model is a non-trivial matter

because of the rigid constraints. In this section we will discuss the calculation of the
stress tensor at steady state as well as under transient conditions.

The total stress in a flowing suspension of model polymers is the sum of the
polymer and solvent contributions,

σij = σ
p
ij + σsij (5.1)

and can be expressed as (Bird et al. 1987)

σij = τij − Pδij
= τ

p
ij − Ppδij + τsij − P sδij , (5.2)

where τij = τ
p
ij + τsij and P = Pp + P s. τij is defined to be zero at equilibrium and P

is an isotropic pressure contribution.
The polymer contribution to τij is given by the Kramers–Kirkwood stress tensor

as the moment of the hydrodynamic forces

τ
p
ij =

N∑
ν=1

〈Rνi F
h,ν
j 〉 (5.3)

where Rνi is the bead position relative to the chain centre of mass and 〈· · ·〉 denotes
an ensemble average. Note that τpij has been made dimensionless with npkT where np
is the number density of polymer chains. Due to the force balance on the beads, the
stress can also be expressed as

τ
p
ij = −

N∑
ν=1

〈Rνi F
br,ν
j + Rνi F

c,ν
j 〉. (5.4)
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In this form, τpij is numerically difficult to evaluate because the Brownian and con-

straint forces have stochastic noise of the order (δt)−1/2. We have developed a modified
form of the Kramers–Kirkwood stress tensor that filters out the noise contributions
of order (δt)−1/2. The filtering technique is consistent with the Stratonovich interpre-
tation of the stochastic forces and makes use of the correlations defined in equations
(2.9) and (2.10). Starting with equation (5.4), we will consider each term separately.
The first term we will write as

−
〈

1
2

[
Rνi (t) + Rνi (t+ δt)

]
F
br,ν
j (t+ δt/2)

〉
(5.5)

due to the Stratonovich nature of the Brownian force. Recognizing that the Brownian
force is uncorrelated with the bead position at the beginning of a time step we can
rewrite equation (5.5) as

−
〈

1
2

[
Rνi (t+ δt)

]
F
br,ν
j (t+ δt/2)

〉
. (5.6)

We can expand Rνi (t + δt) in a Taylor series about the initial position at time t as
Rνi (t)+O(δt)1/2 and subtract from it Rνi (t) which is again uncorrelated to the Brownian
forces at time (t+ δt/2). This leads to

−
〈

1
2

[
Rνi (t+ δt)− Rνi (t)

]
F
br,ν
j (t+ δt/2)

〉
. (5.7)

By making this transformation we are taking the time average of a displacement
of order (δt)1/2 multiplied by a stochastic force of order (δt)−1/2 which is an O(1)
quantity. Thus we have avoided noise of order (δt)−1/2 while still capturing the correct
correlations.

Order (δt)−1/2 noise still exists in the stress calculation due to the constraint forces.
This noise originates in the first iteration of the matrix equations necessary to solve
for the tensions. There are also O(1) contributions after the first iteration which we
need to preserve. We can distinguish the order (δt)−1/2 terms by solving an auxiliary
set of equations containing only Brownian forces while neglecting the solvent velocity.
The forces (Brownian and tension) on the beads are again summed and set to zero,
but now are solved subject to the constraint that the link velocity is perpendicular
to the link direction at the beginning of a time step. Let T ∗,ν and F

∗,ν
i denote these

tensions and constraint forces respectively. This leads to the following N − 1 linear
equations for T ∗,ν:

[Fbr,ν+1
i (t+ δt/2)− Fbr,νi (t+ δt/2)]uνi (t) + T ∗,ν+1uν+1

i (t)uνi (t)− 2T ∗,ν

+T ∗,ν−1uν−1
i (t)uνi (t) = 0. (5.8)

We note that due to the explicit constraint, only one iteration of a tridiagonal matrix
is needed at each time step to solve for the tensions. These forces are the components
of the total tension force which are order (δt)−1/2 and are only correlated to Rνi (t+δt).
A valid form for the stress contribution from the constraints is then

−
〈[

Rνi (t+ δt) + Rνi (t)

2

] [
F
c,ν
j (t)− F∗,νj (t)

]
+

[
Rνi (t+ δt)− Rνi (t)

2

]
F
∗,ν
j (t)

〉
. (5.9)

Combining these terms then we can avoid the (δt)−1/2 noise in the stress evaluation.
An equivalent algorithm to avoid the stochastic noise in the stress calculation has
recently been introduced from a different approach by Grassia & Hinch (1996).

The above algorithm is necessary to evaluate the stress tensor in transient or time-
dependent simulations, but the simpler Giesekus form can also be used to obtain
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steady-state stresses in stochastic simulations. The Giesekus form of the stress tensor
is

τ
p
ij = −1

2

d

dt

N∑
ν=1

〈Rνi Rνj 〉 (5.10)

where d/dt denotes a co-deformational derivative

d

dt
Qij =

dQij
dt
− Pe(κikQkj + Qikκ

†
kj), (5.11)

which is equivalent to the Kramers–Kirkwood stress tensor (Bird et al. 1987).
Note that the Giesekus stress tensor involves calculating the time derivative of

a sample trajectory. The time derivatives cannot be calculated explicitly because
our stochastic simulation produces sample paths which are not time differentiable;
however, for steady-state stress calculations, the time derivative may be set to zero
and the Giesekus stress tensor becomes simply

τ
p,ss
ij =

1

2

N∑
ν=1

〈PeκikRνkRνj + Peκ
†
kjR

ν
i R

ν
k〉, (5.12)

an expression in terms of the bead positions alone. This is not only computationally
more efficient than the alternative stress algorithm, but also provides insight into those
polymer configurations making the largest contribution to any particular element of
the steady-state stress tensor.

6. Brownian versus viscous stress
Distinguishing the Brownian from the viscous stresses is crucial if one wants

to determine the validity of various constitutive models in capturing the complex
rheological behaviour of a polymer or a polymer model. In this section we discuss the
origin of the two stress contributions, as well as how to calculate them in a stochastic
simulation. Finally we derive an analytic expression for the maximum Brownian stress
contribution from a polymer fully aligned by an arbitrarily strong flow field.

Viscous stress is due to the polymer’s inability to move affinely with the deterministic
flow field in the absence of Brownian forces. Brownian stresses are associated with the
tendency of Brownian forces to randomize the polymer configuration. Both stresses
depend upon the polymer configuration and this configuration is in turn determined by
both the Brownian and flow forces. The easiest way to distinguish these contributions
in an experiment is to simply turn off the flow field. The instantaneous or ‘short time’
stress remaining is due solely to the Brownian forces.

This distinction can be made clearer if we examine the stress contribution from
a rigid dumbbell. For rigid dumbbells the polymer stress can be written as (Larson
1988)

τdumbbellij =
[
−δij + 3〈uiuj〉+ 1

2
Peκkl〈uiujukul〉

]
, (6.1)

where ui is a unit vector defining the dumbbell orientation. The first two terms
represent the Brownian stresses and the last is the viscous stress. While the Brownian
stresses seem to be independent of Peκij , they are not really since ui is determined by
both the thermal and flow forces (Bird et al. 1987). Furthermore, it is apparent that
setting κij = 0 will effectively remove the viscous stresses.

In our simulations we can easily solve for the viscous stress by setting the Brownian
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Equation (5.4) Equation (6.1) Stewart & Sorensen (1972)

Pe ηviscous ηBrownian ηtotal ηviscous ηBrownian ηtotal ηtotal

1 0.0331 0.0489 0.0820 0.0334 0.0477 0.0811 0.0830
10 0.0366 0.0310 0.0676 0.0367 0.0308 0.0673 0.0675
100 0.0274 0.00276 0.0304 0.0274 0.00274 0.0301 0.0299

Table 1. Rigid dumbbell shear viscosity

forces to zero at the beginning of a time step and solving for the tensions. Only one
iteration of the matrix equations is needed since the Brownian forces are neglected.
The viscous stress is then

τ
p,visc
ij = −

N∑
ν=1

〈Rνi (t)F
cvisc,ν
j (t)〉 (6.2)

where Fcvisc,νj is the constraint force obtained when the Brownian forces are neglected.
The Brownian stresses could be also be determined separately, but since we already
have calculated the total and viscous polymer stress, we need only subtract the viscous
from the total to obtain the Brownian contribution. We note that the Brownian
polymer stress has contributions from both the Brownian and constraint forces.

To verify that we are in fact correctly calculating the total stress as well as correctly
distinguishing the Brownian from the viscous stresses, we have performed several
simulations of dumbbells in shear flow. The steady-state shear viscosity and first
normal stress calculated from our algorithm and equation (6.1) are shown along with
the results of Stewart & Sorensen (1972) in table 1. We see excellent quantitative
agreement confirming the validity of our stress algorithm.

Lastly, we expect to see a plateau in the Brownian stress in flows strong enough
to fully unravel the polymer coil and align the connecting rods. For convenience we
briefly switch from indicial to Gibbs notation. From the kinetic theory of bead–rod
chains, the polymer stress (Liu 1989) for the chain can be written as

τ p =

N−1∑
i,j=1

〈PeĈijκ : ujujuiui〉+ 6

N−1∑
i,j=1

〈Ĉijuiuj〉

+

[
N−1∑
i,j=1

Aij〈Ĉijujuj〉 −
N−1∑

i,j,k,l=1

AikAil〈ĈijĈkl(uk · ul)uiuj〉
]

−(N − 1)δ. (6.3)

where

Aij =

2 if i = j
−1 if i = j ± 1
0 otherwise.

(6.4)

Ĉij is defined by the relation

N−1∑
j=1

(ui · uj)AijĈjk = δik (6.5)

and ui = Ri+1 − Ri.
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Let the polymer orientation be ni such that uνi = ni. The last four terms in equation
(6.3) are the Brownian stress and can be simplified to

τ
p
ij =

[
1
3
N3 + 2

3
N − 1

]
ninj − (N − 1)δij . (6.6)

Using a different approach, Grassia & Hinch (1996) have independently derived
equation (6.6) and showed that the tensions in the connecting rods are of the correct
magnitude to satisfy the inextensibility constraint. Thus the leading-order term in the
Brownian stress from a straight bead–rod chain scales as N3. For comparison, the
Brownian stress in a rigid bead–rod chain is independent of N. The difference lies
in the fact that in a bead–rod chain each added bead gives the chain two additional
degrees of freedom, while a rigid bead–rod chain has its degrees of freedom fixed at
five. In addition, the viscous stress from a bead–rod chain aligned along the primary
axis of extension scales with N3Pe. Thus if the chain can be unravelled at Pe less
than 1, the Brownian stress will be larger than the viscous.

7. Birefringence and stress-optic law
The birefringence is a measure of the optical anisotropy of a medium. For polymer

solutions, birefringence is a sensitive measure of the average conformation of the
polymer molecules. In our simulations each connecting rod in the chain is assigned
a polarizability α1 parallel to the rod and α2 perpendicular to it. The anisotropic
polymer contribution to the polarizability tensor αpij is the sum of the individual rod
polarizability tensors (Larson 1988)

α
p
ij = np(α1 − α2)

N−1∑
ν=1

uνi u
ν
j . (7.1)

The index-of-refraction tensor is proportional to the polarizability tensor through the
Lorentz–Lorenz formula:

n
p
ij = Aα

p
ij , (7.2)

where A is a function of the isotropic part of the index of refraction. We non-
dimensionalize the index of refraction with npA(α1 − α2), and thus the computed
dimensionless polymer index of refraction is a measure of the average orientation of
the connecting rods in the chain.

The birefringence, ∆′, is the difference in the principle eigenvalues of the index-
of-refraction tensor. For light propagating along the ‘3’-direction the birefringence is
(Fuller 1990)

∆′ =

(N−1∑
ν=1

〈uν1uν1 − uν2uν2〉
)2

+ 4

(
N−1∑
ν=1

〈uν1uν2〉
)2
1/2

(7.3)

where ∆′ has been made dimensionless with npA(α1 − α2). The extinction angle, χ,
measures the orientation of the principal axis from the ‘1’-direction

tan(2χ) =

2
N−1∑
ν=1

〈uν1uν2〉

N−1∑
ν=1

〈uν1uν1 − uν2uν2〉
. (7.4)

For shear and uniaxial extensional flow the dimensionless birefringence will be zero
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at equilibrium and have a maximum possible value of N − 1. The extinction angle in
shear flow for small Wi is initially 45◦ and can decrease to a minimum of 0◦. Due to
the symmetry of extensional flow, the extinction angle is a constant for all Wi and is
not of interest.

In addition to measuring the average chain conformation, birefringence can po-
tentially measure the polymer stress if the stress-optic law is valid for the system
(Wales 1976; Larson 1988; Kannan & Kornfield 1994). The stress-optic law states
that the polymer stress is proportional to the index-of-refraction tensor. A stress-optic
coefficient for the chain is usually defined by the relation

n
p
ij = C σ

p
ij . (7.5)

We note that the most general form for the stress-optic relation is through a fourth-
order tensor Cijkl(Wi). In the present study we have limited ourselves to testing the
validity of equation (7.5) since it is the most commonly assumed form for the stress-
optic law. Kuhn & Grun (1942) have shown for small deformations of a bead–rod

chain that
N−1∑
ν=1

〈uνi uνj 〉 ∝ 〈Rendi Rendj 〉 where Rendi is a vector directed from one end of

the chain to the other. If the stress due to the bead–rod chain is approximated
using a Hookean dumbbell (Treloar 1975), then the stress will also be proportional
to 〈Rendi Rendj 〉 and the stress-optic law will hold. Note that the major assumptions
are small deformations from the equilibrium configuration and a purely entropic or
Brownian stress proportional to 〈Rendi Rendj 〉.

In our simulations the polymer stress is a complicated function of uνi and has both
Brownian and viscous contributions. The viscous stress scales with Wi and thus must
be small relative to the Brownian contribution for C to be constant. Furthermore, if
the rod orientations are uncorrelated, as found near equilibrium, then the tensor Ĉij
in equation (6.5) is to a first approximation isotropic. Using this approximation in

equation (6.3) leads to a Brownian stress proportional to
N−1∑
ν=1

〈uνi uνj 〉. Thus we expect

the bead–rod chain to have an approximately constant stress-optic coefficient if the
stress is mostly Brownian and the chain is only slightly distorted from its equilibrium
configuration. We check the stress-optical rule in our simulations over a wide range
of flow strengths as described below.

8. Chain time scales
The relaxation of an uncoiled polymer chain occurs over many times scales and can

be characterized by a spectrum of relaxation times. The slowest relaxation process
yields a dimensionless characteristic relaxation constant λ1 for the chain. This time
may be used to rescale our Péclet number and thus define a Weissenberg number,
Wi:

Wi = λ1 Pe. (8.1)

The Weissenberg number is thus the product of the chain relaxation time and the
shear rate and is more indicative of the flow strength than the Péclet number for a
polymer chain. Furthermore, in an experiment, one can measure the chain relaxation
after applying a strong flow and use this value to present the results in terms of
an experimental Wi to be compared directly with simulations. We have performed
simulations of chains which are initially uncoiled and aligned in the ‘1’-direction. This
initial configuration corresponds to a chain placed in uniaxial extensional flow as
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Figure 1. Birefringence scaled by (N − 1) versus t/N2 for an initially straight chain aligned
in the ‘1’-direction for N = 2, 3, 5, 10, 25, 50, 100. The inset graph shows the polymer stress,
[τ11 − 0.5(τ22 + τ33)]/(N − 1), versus t/N2 for N = 25, 50, 100.

Wi→∞. As an ensemble of 500–4000 chains relax, we calculate the average transient
stress and the birefringence.

We anticipate that at long times the relaxation of the birefringence will decay
exponentially and λ1 will scale with the square of the number of connecting rods,
N2, for long chains (Larson 1988). This is analogous to the slowest mode of a Rouse
chain (Doi & Edwards 1988). As the chain relaxes, correlations in the directions of
the connecting rods vanish and the stress is proportional to (N − 1)〈uiuj〉 where ui is
the average orientation of the rods. Thus at long times the stress will be proportional
to the birefringence and a relatively constant stress-optic coefficient is expected. In
figure 1 we show the birefringence normalized with N − 1 versus t/N2 and, in the
inset, we show the stress normalized with N − 1 versus t/N2. We have fit the linear
region of the semi-log plots with a single exponential of the form Ae−t/λ1 and show
the results for λ1 in table 2. The λ1 values obtained from fitting the decay of stress
and birefringence are identical to within the statistical error of the simulations. Our
stress relaxation times are consistent with the recent work of Grassia & Hinch (1996).
The transient stress-optic coefficient is shown in figure 2. The value of C not only
approaches a constant for long times, but converges to a value independent of N
for large N. Thus for small perturbations to the equilibrium chain configuration the
dimensionless Brownian stress is approximately

lim
N→∞

τ
p
ij ≈ 5

N−1∑
ν=1

〈uνi uνj 〉. (8.2)

This is in agreement with the theoretical stress-optic coefficient derived by Kuhn &
Grun (1942). We note that if one considered the chain as being composed of N − 1
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N λ
birefringence
1 λstress1

2 0.0841 0.0836
3 0.142 0.127
5 0.411 0.388

10 1.42 1.52
25 9.43 9.35
50 35.5 36.6

100 142 146

Table 2. Long relaxation time obtained from birefringence and stress
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Figure 2. Stress-optic coefficient for an initially straight chain aligned in the ‘1’-direction for
N = 2, 3, 5, 10, 25, 50, 100.

unconnected dumbbells and used equation (6.1), the coefficient 5 in equation (8.2)
would be 3. The stress in a chain exceeds that in a collection of dumbbells due to its
connectivity and inextensibility.

The fastest decay process is determined by the smallest rigid length scale in the
chain, i.e. the inter-bead separation. Initially in the straight chain the beads will
freely diffuse in the transverse direction as if they were N − 1 rigid dumbbells. The
dimensionless rotary diffusivity of a rigid dumbbell is 12 so the birefringence will
initially decay as

lim
t→0

nij

N − 1
= e−12 t ≈ 1− 12 t . . . (8.3)

as seen in figure 3. Grassia & Hinch (1996) found that the stress in a straight chain
decays from its value of 1

3
kTN3 on a time scale of 1/(2.1N2). To obtain this time
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Figure 3. Short-time birefringence scaled by (N − 1) versus t/N2 for an initially straight chain
aligned in the ‘1’-direction for N = 2,3,5,10,25,50,100. The solid line is the analytic expression for
the short-time birefringence decay for a rigid dumbbell.

scale they assume that the beads initially freely diffuse in the directions transverse to
the chain alignment. An equivalent initial diffusive motion is obtained by replacing
the chain with N − 1 rigid dumbbells. The different time scale arises because they
are considering the decay of initially O(N2) tensions in the rods which are related
to the stress while we base our time scale on only the orientation of a rod, an O(1)
quantity.

9. Steady shear flow
In this section we will discuss the steady-state dynamics and rheology of bead–rod

chains in simple shear flow

u∞i (rνi ) = Pe δi1δj2r
ν
j . (9.1)

In previous work Liu (1989) calculated the polymer viscosity and first normal stress
coefficient for small chains, N 6 20. We also calculate these quantities in our simu-
lations, but we examine much larger chains, as well as calculating the birefringence
and distinguishing between Brownian and viscous stresses.

The polymer contributions to the shear viscosity and first normal stress coefficient
are defined by the relations

ηp =
τ
p
12

Pe
, (9.2)

Ψ
p
1 =

τ
p
11 − τ

p
22

Pe2
. (9.3)
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Figure 4. Birefringence scaled by (N − 1) in shear flow versus Wi for N = 5, 10, 25, 50, 100.

Making use of equation (5.12) one can show that at steady state

ηp,ss =

N∑
ν=1

〈
Rν2R

ν
2

2

〉
, (9.4)

Ψ
p,ss
1 =

N∑
ν=1

〈
Rν1R

ν
2

Pe

〉
. (9.5)

Thus polymer configurations having portions of the chain oriented transverse
to the mean flow direction contribute most to the shear viscosity while chains
tending to align along the line x1 = x2 contribute most to the first normal stress
coefficient.

The steady-state shear viscosity, ηp,ss, as a function of Wi can be roughly separated
into three regions: a plateau region for Wi < 1 (region I), a power-law region for
1 < Wi < 1000 (region II) and a second ‘weaker’ power-law region for Wi > 1000
(region III). Each region can be characterized by a distinct change in the chain
dynamics giving rise to the rheological behaviour.

In region I, the time to distort the coiled chain from its equilibrium configuration
is much larger than the time for the chain to relax due to thermal fluctuations. This is
reflected in the relatively small birefringence in figure 4 and a relatively constant value
for the viscosity in figure 5 where the viscosity has been scaled with the value for a
random walk in the limit Wi→ 0 (Bird et al. 1987), (N2− 1)/36. The flow does cause
small perturbations to the coil in the flow direction ‘1’ which scale with Wi. These
small perturbations rotate the coil towards the flow direction decreasing the extinction
angle, χ, as seen in figure 6 and this results in a constant first normal stress coefficient
as seen in figure 7 where Ψp

1 has been scaled with the value for a random walk in the
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Figure 7. Steady-state first normal stress coefficient scaled with the zero-shear value versus Wi for
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limit Wi→ 0 (Bird et al. 1987), 2(N2 − 1)(10N3 − 12N2 + 35N − 12)/(32400N). The
relatively small viscous contribution to ηp scales with N, as discussed below, while
the total viscosity scales with N2. Thus as N becomes large the viscous contributions
scaled by the total viscosity go to zero. Note for N = 10 that the viscous contributions
to ηp are only 13% (cf. figure 5). Similarly, the viscous contribution to Ψp

1 scales with
N, while Ψp

1 scales with N4 and thus Ψp
1 becomes purely Brownian as N increases.

For N = 10 the viscous contributions to Ψp
1 constitute only 3% of the total value (cf.

figure 7).
The Wi → 0 viscous contribution to ηp can be physically understood if we

consider the constraints on a chain at equilibrium. As a first approximation, the
equilibrium configuration of a bead–rod chain is a random walk. The Wi → 0 vis-
cous constraints are obtained by assuming the chain configuration is unperturbed by
the fluid velocity and solving for the constraint forces only considering the hydrody-
namic forces (i.e. neglecting Brownian forces). Considering bead ν in the chain, the
viscous contributions to Tν−1 and Tν can be approximated by treating the chain as
comprising independently aligned dumbbells

Tν−1 = − 1
2
Pe uν−1

1 uν−1
2 , (9.6)

Tν = − 1
2
Pe uν1u

ν
2. (9.7)

The viscous contribution to the shear viscosity from bead ν is then〈
− 1

2
Rν2
(
uν1u

ν
1u
ν
2 − uν−1

1 uν−1
1 uν−1

2

)〉
. (9.8)

At equilibrium, 〈uν1uν1〉 = 〈uν−1
1 uν−1

1 〉 = 1/3 and equation (9.8) can be written as〈
− 1

6
(rν2 − rcm2 )

(
(rν+1

2 − rν2)− (rν2 − rν−1
2 )

)〉
. (9.9)
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Figure 8. Stress-optic coefficient versus Wi for chains in shear flow using the 1,2-component of
the stress and index of refraction tensors for N = 5, 10, 25, 50, 100. The inset graph shows the
index-of-refraction n12/(N − 1) versus Wi.

For a random walk with the first bead located at the origin, 〈rν+1
2 rν2〉 = 〈rν2rν2〉

= (ν − 1)/3 and 〈rν2rν−1
2 〉 = (ν − 2)/3 reducing equation (9.9) to

1
18

+
〈

1
6
rcm2
(
(rν+1

2 − rν2)− (rν2 − rν−1
2 )

)〉
. (9.10)

Summing the contributions for N beads gives ηp,viscous ≈ N/18 and thus the viscous
polymer contribution to the viscosity scales with N. The viscous contribution to the
zero shear viscosity in the simulations was best fit to the line 0.0413N− 0.0533 with a
correlation function of magnitude 0.999965. The previous simple scaling also predicts
a linear fit but with a slope of 0.0556 (1/18).

Figures 8 and 9 show the stress-optic coefficient based on n12 and n11 − n22 respec-
tively which are shown in the inset figures. For low values of Wi, C reaches a plateau
that is independent of N. The low-Wi limiting value of C is approximately 0.2, the
same as that obtained in the stress relaxation simulations in figure 2. Since the chain
is only slightly stretched relative to its equilibrium configuration and the stress is
mostly Brownian, we expect a relatively constant value for C as discussed previously
in §7.

In region II, the characteristic flow time is shorter than the chain relaxation time and
the chain becomes greatly distorted by the flow. The birefringence in figure 4 steadily
increases to nearly 80% of its maximum as a result of the chain being stretched in
the flow direction and this value increases with increasing N. The extinction angle,
χ, continues to decrease as the chain is rotated in the flow direction, but at a much
slower rate than in region I, cf. figure 6. The behaviour of the birefringence and
extinction angle suggest that the chain is initially rotated in the flow direction at
low Wi in region I and starts to appreciably stretch at much larger Wi in region
II. The viscosity and first normal stress coefficient begin to decay at Wi ≈ 1. The
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Figure 9. Stress-optic coefficient versus Wi for chains in shear flow using the difference in the 1,1
minus the 2,2 component of the stress and index of refraction tensors for N = 5, 10, 25, 50, 100. The
inset graph shows the difference in the index of refraction components (n11 − n22)/(N − 1) versus
Wi.

viscosity and first normal stress coefficient for different values of N collapse onto
single universal curves as shown in figures 10 and 11 respectively. The shear viscosity
and first normal stress coefficient power-law thinning is mainly due to the decay
of the Brownian stress contribution while the viscous contributions show a slight
increase in this region. This increase is due to the chain connectivity and deformation
in the flow. As the flow rotates and unravels the chain, the rod orientations become
correlated. These orientation correlations necessitate correlated velocities to maintain
connectivity of the segments and thus the movement of the chain ceases to be purely
affine. This correlated movement coupled with an increasing Wi can explain the
slight increase in the viscous contribution to ηp and Ψ

p
1 . The subsequent thinning at

larger Wi is due to the rotation of the nearly unravelled chain in the flow direction
which reduces the velocity gradient of the chain samples. The Brownian and viscous
contributions to the viscosity and first normal stress coefficient become comparable
in this region as shown in figures 5 and 7. For the largest chain, N = 100, the viscous
and Brownian contributions to the effective shear viscosity are equal only at a very
large value of Wi ≈ 104. The stress-optic law begins to break down in this region
due to the large distortions of the chain and the growing viscous contribution to
the stress. The stress-optic coefficient now also depends on which components of the
index-of-refraction and stress tensors are compared as shown in figures 8 and 9. The
stress-optic relation as defined in equation (7.5) is no longer valid and the right-hand
side must be replaced by the more general form Cijkl(Wi)σpkl .

We expect that the onset of shear thinning in region II will slowly shift to higher
Wi as N increases. If we let N approach infinity at a given Wi, we expect to recover
linear viscoelastic behaviour, i.e. the viscosity and first normal stress coefficient will
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comparison to power law N1/3.

gradually approach their zero-shear value. For a FENE-PM (Wedgewood, Ostrov &
Bird 1991) bead–spring chain, we can show the analogous behaviour if we consider
fixing the FENE parameter b, fixing the chain Wi and analysing the N dependence
of the high-Wi power-law behaviour. For large but finite N, it is easy to show that
the high-Wi viscosity scaled by the zero-shear value scales with N1/3Wi−1/3 and the
first normal stress coefficient scaled by the zero-shear value scales with N1/3Wi−4/3.
In figure 12 we show results for the steady-state shear viscosity of large bead–rod
chains for Wi = 100. The viscosity gradually increases with increasing N, though for
N = 400 the viscosity is still substantially less than the zero-shear value, indicating a
large amount of shear thinning. The viscosity increase is very close to the slow N1/3

increase observed for a FENE-PM chain. Thus, for finite N there will still exist a
power-law region in which the viscosity and first normal stress coefficient shear thin,
but this will occur at larger Wi as N increases.

The rheology of the chains in region II can be better understood by considering
the trajectory of a single chain as shown in figure 13. The chain can be thought of
as a string being pulled straight due to the flow forces and undergoing distortions
transverse to the average orientation due to Brownian forces. The chain executes
‘flips’ with a typical breadth in the ‘2’-direction (or shear gradient direction) which
is somewhat greater than one connecting rod length but much smaller than the total
length of the chain. From equation (9.4), the viscosity is directly related to the average
‘2’-component of a bead position relative to the chain centre of mass and is thus
related related to the transverse distortions in the chain.

The viscosity scaling can be physically understood by a quasi-steady balance
between the tension induced by the flow and the Brownian forces. To understand
these tensions, we must first consider the form of the Brownian forces for an extended
bead–rod chain in the absence of flow. Recently Grassia & Hinch (1996) have



Dynamic simulation of flexible polymers 275

Wi = 0.355

Wi = 35.5

Wi = 3.55 × 108

Figure 13. Sample chain trajectories in steady shear flow for N = 50 and Wi = 0.355, 35.5 and
3.55× 108.

shown that a bead–rod chain which is initially uncoiled and aligned along the ‘1’-
direction will undergo anomalous diffusion, i.e. mean-square displacements which
scale nonlinearly with time, in the transverse direction for 1/N2 < t < N2. For
t < 1/N2 the average squared distortion grows with t corresponding to free diffusion
and with t1/2 for t > 1/N2. The anomalous diffusion is due to the constraints and is
completely analogous to the anomalous diffusion of small molecules in a confined or
constrained geometry (Müller-Plathe, Rogers & Gunsteren 1992). Using our viscosity
results for N = 50 and 100 and equation (9.4), the mean-squared displacement of
a bead in the ‘2’-direction relative to the centre of mass of the chain is between 1
and 0.01. Assuming that the chain is nearly fully aligned in the flow direction, the
average displacement in the ‘2’-direction is approximately equal to the displacement
transverse to the chain orientation. Thus in our discussion we will assume that the
chain is exactly aligned in the flow direction and transverse distortions will refer to
any displacements in the ‘2’-direction.

In figure 14 the mean-square transverse displacement relative to the centre of mass
of the chain for several beads in a 50-bead chain initially aligned in the ‘1’-direction
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centre of mass versus time for the 3rd, 11th and 19th bead are shown. The lines are the best fit to
the function tρ where ρ = 0.73, 0.74 and 0.72 for N = 3, 11 and 19 respectively.

with Wi = 0 is shown. We have focused on the range of displacements corresponding
to our shear viscosity data. The transverse displacements grow at a rate proportional
to ta where a is approximately 3/4, or with an exponent which is the average of the
two time exponents reported by Grassia & Hinch (1996). The diffusive process can
then be expressed as

〈Rν2Rν2〉 = D(Rν2)t, (9.11)

D(Rν2) = (Rν2)−2/3. (9.12)

Physically this corresponds to a diffusivity which decreases as Rν2 increases due to
the rotation of the connecting rods into the transverse direction. The constraints
specify that the velocity of a rod must be perpendicular to its orientation which is
maintained by applying constraint forces with an orientation parallel to the rods. The
constraint forces tend to decrease the effective Brownian force in the direction of the
rod orientation.

The shear flow gives rise to tensions in the chain which scale with PeRν2 . The
magnitude of the transverse Brownian forces can be estimated as (D(Rν2))1/2/t, or
from equation (9.12) is of order (Rν2)−8/3. If we assume the tension due to the flow is
balanced by the Brownian tension, then Rν2 ∝ Pe−3/11. Thus we expect the breadth of
the chain in the ‘2’-direction to scale with Pe−3/11. Due to the flexible nature of the
chain, the chain will also flip within a distance from the ‘1’-axis that obeys the Pe−3/11

scaling. The chain thus contributes an order-Pe−6/11 amount to the viscosity when
it flips and an order-Pe−6/11 amount afterwards, resulting in a viscosity which scales
with Pe−6/11. Our simulations compare favourably to the predicted Pe−6/11 scaling as
shown in figure 10.
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Using equation (9.5), the previous scaling for Rν2 and an expected O(1) value for Rν1 ,
the first normal stress coefficient is predicted to scale with Pe−14/11. The decrease of
Ψ

p
1 is similar to the Pe−4/3 decrease for a single rigid rod (Hinch & Leal 1972). The

rigid rod spends most of its time aligned in the flow direction in a region of order
Pe−1/3 where diffusion and advection are comparable. We note that previously Liu
(1989) observed a Pe−1/2 power-law decrease for ηp and a Pe−4/3 power-law decrease
for Ψp

1 for small bead–rod chains, though no physical explanation for the exponents
was given.

In region III, the average transverse displacement of the chain becomes much
smaller than the rod size (i.e. Pe−3/11 � 1/(N−1)). Most of the chain is aligned in the
flow direction, but due to Brownian fluctuations, portions of the chain are flipping.
The smallest ‘flipping event’ that can occur is the rotation of an individual rod which
results in displacements in the ‘2’-direction which are much larger than those in the
straight portions of the chain as shown in figure 13. The chain is continually flipping
and often does not completely extend to its full length before starting to flip again.
The displacements due to flipping dominate the viscosity and first normal stress
coefficient. The viscosity, figure 5, has nearly a plateau value because the transverse
displacements during flipping are governed by the smallest rigid length scale, the
connecting rods. By contrast, the first normal stress coefficient in figure 7 shows a
slightly larger power-law decay due to the chain not extending fully before flipping.
The dynamics is also reflected in the birefringence which reaches a plateau value near
80% of its maximum value while the extinction angle slowly continues to decrease as
the straight regions of the chain rotate closer to the ‘1’-axis.

In addition to the equilibrium osmotic pressure contribution by the polymer npkT ,
their is a dynamic polymer pressure:

Pp,dyn = − 1
3
τ
p
ii (9.13)

The dynamic polymer pressure arises solely due to the flow and is zero at equilibrium.
At steady state we can make use of the Giesekus form of the stress tensor and the
dimensionless pressure (Pp,dyn/npkT ) can be written as

Pp,dyn = − 1
6
Pe

N∑
ν=1

〈κikRνkRνi + Rνi R
ν
kκ
†
ki〉 (9.14)

In linear shear flow this becomes

Pp,dyn = − 1
3
Pe

N∑
ν=1

〈Rν1Rν2〉. (9.15)

We note that this is equal to −Pe2Ψ
p
1 /3. In steady extensional flow the dynamic

pressure is

Pp,dyn = − 1
3
Pe

N∑
ν=1

5〈Rν1Rν1 − 0.5Rν2R
ν
2 − 0.5Rν3R

ν
3〉. (9.16)

The dimensionless dynamic polymer pressure for a Hookean dumbbell in shear flow
is (Bird et al. 1987)

P
p,dyn
Hookean = − 2

3
Wi2 (9.17)

and in extensional flow for Wi < 1 is

P
p,dyn
Hookean = −

[
1− 0.5Wi

(1 + 0.5Wi)(1−Wi)

]
+ 1. (9.18)
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50-bead chain and a Hookean dumbbell.

In figure 15 we show the dynamic polymer pressure for N = 50 in shear and
extensional flow along with the results for a Hookean dumbbell. Note that the
magnitude of the dynamic pressure for both models increases with increasing Wi,
and the pressure is negative. If we consider the chain as a collection of beads, attractive
forces between beads tend to lower the osmotic pressure while repulsive forces, such
as hard-sphere repulsions, will lead to increases in the osmotic pressure. Collectively,
the rods in the bead–rod model, and also the spring in the Hookean dumbbell act
to resist changes from the equilibrium chain configuration. In shear and extensional
flows they act as attractive forces which will decrease the dynamic polymer pressure
as Wi increases. This is in accord with the non-equilibrium molecular dynamics of
bead–spring chains of Kröger, Loose & Hess (1993) in which a decrease in the
pressure is attributed to intramolecular bond stretching. In figure 15, the bead–rod
Pp,dyn compares favourably with the Hookean dumbbell for small Wi but deviates
at large Wi due to the finite length of the bead–rod chain. The apparent kink in
the bead–rod Pp,dyn in extensional flow at around Wi = 1 is due to the coil-stretch
transition in the chain which for a Hookean dumbbell results in a divergence of the
microstructure and pressure. At large Wi in extensional flow, the bead–rod chain
will reach near full extension and Pp,dyn scales with Wi. However, at large Wi in
shear flow we have already shown that Ψp

1 scales with Wi−14/11, so Pp,dyn will scale
with Wi8/11. The existence of a non-zero dynamic pressure has been suggested to
be the source of concentration gradients which can occur in curvilinear shearing
flows (Doi 1990; Milner 1991). The bead–rod chain would predict qualitatively and
quantitatively similar trends for the concentration gradients as a Hookean dumbbell
at low Wi, but have a smaller affect at large Wi due to a smaller dynamic pressure.
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10. Steady uniaxial extensional flow
The dynamics and rheology of chains in uniaxial extensional flow:

u∞i (rνi ) = Pe
[
δi1δj1 − 1

2
(δi2δj2 + δi3δj3)

]
rνj (10.1)

has also been examined. The polymer contribution to the extensional viscosity is
defined by the relation

ηp =
τ
p
11 − τ

p
33

Pe
. (10.2)

Uniaxial extensional flow is one type of potential flow. The steady-state distribution
function, Ψ , for a chain in a potential flow is (Kramers 1946)

Ψ = cC1/2 exp(φ/kT ) (10.3)

where φ = (ξ/2κij)
∑N

ν=1 R
ν
i R

ν
j , C is the determinant of a transformation matrix (Has-

sager 1974) and c is a normalization constant. The average of an arbitrary function
A(Rνi ) is then the product of the function and Ψ integrated over the configuration
space of the chain. Previously, Hassager (1974) numerically calculated the extensional
viscosity for a chain with N = 3. Following the method of Hassager (1974), we have
calculated the viscous and the Brownian contributions to the polymer extensional
viscosity in addition to the total polymer viscosity (the details of this calculation can
be found in the Appendix). In figure 16 our simulation and kinetic theory results
are shown along with the results of Hassager (1974). We see excellent agreement
between our results and Hassager’s for the total viscosity, and our kinetic theory and
simulations also show excellent agreement. As N becomes large, the computational
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time to evaluate the integrals involved in the kinetic theory becomes large and the
stochastic simulations are a more feasible means of performing the calculations.

Using asymptotic expansions in Pe, Hassager (1974) developed expressions for the
steady-state extensional viscosity for bead–rod chains at low and high extension rates:

ηp =

{ (
1 + 1

90
Pe
)

3ηp(Pe→ 0), Pe→ 0(
1− (24/N2Pe)

)
N3ηp(Pe→ 0), Pe→∞

(10.4)

where ηp(Pe→ 0) is the shear viscosity for a flexible bead–rod chain in the limit that
Pe goes to zero or zero-shear viscosity. Previous work by Liu (1989) has confirmed
these scalings. Using the relaxation time scaling (λ1 ∝ N2) and λ1 for N = 100, we
can estimate Wi = 0.0142N2 Pe for large N and write equation (10.4) as

ηp =

{
(1 + 0.78Wi) 3ηp(Pe→ 0), Wi→ 0(
1− 0.34/Wi

)
N3ηp(Pe→ 0), Wi→∞ .

(10.5)

Thus by scaling the extension rate with the chain time scale λ1, the extensional
viscosity at small and large Wi can be collapsed onto a universal curve for all N. The
viscosity will start to appreciably increase at O(1) values of Wi and reach 90% of its
maximum value at Wi = 3.4.

Figure 17 shows the total polymer extensional viscosity and Brownian contribution
versus Wi. The viscous contribution is shown in figure 18 along with the Brownian
contribution versus Wi for the three longest chains simulated. In figures 17 and 18
the polymer viscosity has been scaled with N(N − 1)2/12 such that the total polymer
extensional viscosity asymptotes to 1 for large Wi. At small Wi, ηp is equal to
three times the zero shear value. In addition, the viscous and Brownian contributions
equal three times their zero-shear-rate value. The low-Wiηp is 76.8% Brownian for
N = 5 and 98.5% for N = 100. At small Wi (Wi 6 3) the birefringence in figure 19
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approaches zero while the stress-optic coefficient is a constant, independent of N, at
a value of C ≈ 0.2. This is in agreement with the zero-shear and long time relaxation
value of C .

At Wi ≈ 1, the birefringence and viscosity increase rapidly and the stress-optic
coefficient begins to decrease. At Wi = 1.07, the viscosity is 68.9% Brownian for
N = 5 and 99.9% for N = 100. As N increases, the polymer viscosity in this region
becomes increasingly Brownian. Note that even though the viscosity for N > 25 is
nearly all Brownian, the stress-optic law fails due to correlations in the connecting
rods which give rise to O(N3) Brownian stresses as discussed previously in §6.

At large Wi the polymer viscosity and birefringence level off as the chain becomes
completely unravelled and aligned along the extensional axis. The stress-optic co-
efficient decreases like Wi−1 as a consequence of the plateau in the viscosity and
birefringence. The polymer viscosity at 90% of its maximum, Wi = 3.4, becomes
increasingly Brownian dominated with increasing N. As the chain becomes fully
aligned, the Brownian stress levels off to the value given by equation (6.6) shown in
figure 17 as solid lines. Eventually the viscous contributions exceed the Brownian,
but this does not occur until values of Wi that are quite large. For N = 100, the
contributions are approximately equal at Wi = 500.

The growth of the Brownian contributions with increasing N at large Wi can be
understood by examining Hassager’s expansions in conjunction with our equation for
the Brownian stress from a fully aligned chain. Consider the viscosity at 90% of its
maximum, Wi = 3.4. We can estimate the Brownian stress as N3/3 using equation
(6.6) while the viscous stress in a fully aligned chain is N3Pe/12 or equivalently
5.9NWi. We will use these limiting forms as an estimate of their magnitude when the
chain is nearly fully extended. At Wi = 3.4, the viscous contribution is 20N while the
Brownian is N3/3, giving a ratio of Brownian to viscous contributions of N2/60. Thus
the Brownian stresses will become increasingly dominant over the viscous stresses for
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increasing N as seen in figure 18. This can be more easily seen if we plot the ratio
of the Brownian contribution to the viscosity divided by the viscous contribution at
Wi = 3.4 and scale this ratio with N2 as shown in figure 20. The ratio approaches a
constant value of approximately 0.0172 at large N compared to the predicted value
of 0.0167 (1/60). Furthermore, the previous scalings can be utilized to show that the
viscous and Brownian contributions will be equal at Wi ≈ 0.06N2.

Previous work by Hinch (1994b) concluded that the transient extensional polymer
viscosity for bead–rod chains in strong extensional flow was mainly viscous. For
N = 100, Hinch assumed that Pe = 0.2 (Wi = 28.4) constituted a strong flow. Our
simulations suggest this is a strong flow in the sense that the polymer configuration
is greatly distorted from its equilibrium configuration, but the steady-state stresses
remain mostly Brownian. While we have calculated both steady-state values and
transient values for the stress, our conclusions differ from Hinch’s primarily due to
the different algorithms used to calculate the stress. Our algorithm explicitly separates
the Brownian from the viscous contributions and avoids order (δt)−1/2 errors. Hinch
does suggest in his work that the small Brownian stresses could be wrong due to
his algorithm (Hinch 1994b). We have performed preliminary transient simulations
confirming that the transient stresses are also Brownian dominated over approximately
the same range of Wi as the steady-state values. Figure 21 shows the transient (start-
up and decay after flow stopped) total, Brownian and viscous extensional viscosity for
N = 50 and Wi = 35. The dashed lines are the steady-state values from figures 17 and
18. The transient extensional viscosity is mostly Brownian over the full time scale and
approaches the steady-state value for long times. Thus the major conclusion of this
section is that the extensional viscosity for large flexible bead–rod chains is Brownian
dominated until Wi � 1, i.e. O(100–500), in contrast to previously published results
(Hinch 1994b). We are currently preparing a more complete study of bead–rod chains
in transient flows (Doyle, Shaqfeh & Gast 1997).
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11. Comparison to the FENE dumbbell model

The bead–rod chain is often the simplest model one can utilize to determine
the statistical mechanics of polymers (Flory 1989), but may be too cumbersome
for understanding the rheology of suspensions in complex geometries (Talwar &
Khomami 1995). A simpler model is a bead-spring dumbbell where the spring
represents an entropic restoring force and the beads act as sources of friction. In
this section we will briefly review the derivation of the FENE dumbbell force law,
describe a simple Brownian dynamics algorithm for FENE dumbbells and then
compare our results for bead–rod chains to Brownian dynamics simulations of FENE
dumbbells.

Early work in modelling the physics of polymer solutions done by Kuhn (1934)
and by Guth & Mark (1934) consisted of representing a polymer by a random walk
of N − 1 links of length a. The probability distribution function for the chain end-
to-end separation is proportional to the number of allowed configurations (given an
end-to-end separation distance) and is a Gaussian function. Kuhn & Grun (1942)
showed that the magnitude of the force required to hold the ends of the chain at a
distance Q apart is given by

Fi =
Qi

Q

kT

a
L−1

(
Q

(N − 1)a

)
, (11.1)

whereL−1 is the inverse Langevin function and Qi is a vector directed from one chain
end to the other. Warner (1972) derived a simpler empirical form for the entropic
force:

FFENEi =
3kT

(N − 1)a2
Qi

/[
1−

(
Q

(N − 1)a

)2
]

(11.2)

referred to as the Finitely Extensible Nonlinear Elastic spring law or FENE.

We can test the force law directly by performing simulations where we hold a
Kramers chain with its ends separated by a given distance Q. Since the reference
frame is arbitrary, we fix one chain end at the origin and the other at a position
Q located along the ‘1’-axis. We set Wi to zero and calculate the average force
required to hold the end points fixed. Due to the geometry we are considering, the
‘1’-component of the average force is the only non-zero component. An equivalent
spring force for the Kramers chain is then equal to the negative of the average
restraining force. In figure 22 we see that the simulations, FENE force law and the
inverse Langevin function show good agreement for chains extended less than 50%
of their maximum length. For larger extensions the FENE force law predicts smaller
forces than the inverse Langevin function and the simulations are well described by
the latter. We see that a chain consisting of only 10 beads does an adequate job of
capturing the universal scaling for the force-extension curve.

To test the FENE model in non-equilibrium situations, we performed Brownian
dynamics simulations for chains with 2 beads joined by a FENE spring in both steady
shear and uniaxial extensional flow. The Brownian force on a bead has the following
statistics:

〈Fbr,νi (t)〉 = 0, (11.3)

〈Fbr,νi (t)Fbr,µj (t′)〉 = 2kTζ δνµ δij δ(t− t′), (11.4)
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Figure 22. The average force required to hold the ends of a bead–rod chain at a fixed separation
versus the separation distance for N = 10, 20, 50 and 100. The FENE force law and inverse
Langevin function are shown for comparison.

where ζ is the drag on a bead with a diameter d. The hydrodynamic force is

F
h,ν
i = −ζ(ṙνi − u∞i (rνi )). (11.5)

The spring force exerted on bead 2 is chosen to be FFENEi and on bead 1 is −FFENEi .
The size of a bead is chosen to be half the length of the bead–rod chain or d = Na/2.

The only parameter in the FENE dumbbell not having a direct relation to a bead–rod
chain is ζ. We use ζ as an adjustable parameter to fit the FENE dumbbell to the
zero-shear-rate viscosity of the bead–rod chain. We non-dimensionalize the problem
by scaling lengths with d and forces with kT/d. This scaling results in a FENE Péclet
number, PeFENE , equal to ζd2γ̇/kT (or ζd2ε̇/kT ). The characteristic relaxation time
for the FENE dumbbell, ζd2(N − 1)/(3N2kT ) (Bird et al. 1987), is used to define a
Weissenberg number, WiFENE , equal to PeFENE(N − 1)/(3N2). With this assumption,
we can now compare our bead–rod chains to an equivalent FENE dumbbell. The
Brownian dynamics simulations were performed using a simple first-order algorithm
and the dumbbell stress was calculated via equation (5.3).

We compare simulations using our longest bead–rod chains, N = 100, to the
equivalent FENE dumbbell and express the FENE dumbbell results in terms of the
bead–rod length scale a. The drag coefficient ζ has been set at 33.625Nξ which we note
is approximately 2/3 of the drag on half the bead–rod chain. In figure 23 the polymer
shear viscosity, made dimensionless with npξa

2, is plotted versus Wi or WiFENE .
The FENE dumbbell does a fair job of qualitatively and quantitatively modelling the
bead–rod chain for Wi < 104. The FENE dumbbell viscosity is proportional to Wi−2/3

(Larson 1988) for large Wi while the bead–rod chains have a viscosity proportional
to Wi−6/11 for intermediate Wi and a much smaller power-law exponent for large Wi.
We do not expect the FENE dumbbell to be able to capture the high-Wi viscosity
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Figure 23. The dimensionless polymer shear viscosity versus Wi or WiFENE for a bead–rod chain
with N = 100 and the equivalent FENE dumbbell.
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Figure 25. The dimensionless polymer extensional viscosity versus Wi or WiFENE for a bead–rod
chain with N = 100 and the equivalent FENE dumbbell.

behaviour of a bead–rod chain since it is a purely viscous phenomenon. In figure 24
the first normal stress coefficient in shear, made dimensionless with npξ

2a4, is plotted
versus Wi or WiFENE . The curves for the FENE dumbbell and the bead–rod chain
are qualitatively very similar, but the FENE dumbbell first normal stress coefficient
is approximately twice the bead–rod chain value for all values of Wi. The FENE
dumbbell and bead–rod chain extensional viscosity, made dimensionless with npξa

2,
versus Wi or WiFENE is shown in figure 25. The sharp transition in the bead–rod
extensional viscosity is well described by the FENE dumbbell, but the magnitude of
the FENE dumbbell viscosity is up to twice that of the bead–rod chain. We note that
we could have arbitrarily chosen the drag on one bead of the FENE dumbbell to
be equal to the drag on half of the bead–rod chain, or equivalently ζ = N/2ξ. This
choice would shift the FENE dumbbell results up by a factor of 1.49 but not change
the qualitative features.

From the previous comparisons we see that the FENE dumbbell and the bead–rod
chain have similar rheological behaviour over a broad range of Wi in steady shear
and uniaxial extensional flow, though we note that the physical basis for the stress
at moderate to large Wi is different. The FENE dumbbell stress is purely Brownian
and diverges as the chain becomes fully extended while the bead–rod chain has both
viscous and Brownian stresses that attain limiting values as the chain becomes fully
extended. In general, the FENE dumbbell model is useful for capturing the physics of
the more complicated bead–rod chain in steady shear and uniaxial extensional flow
for Wi < O(100) where the stress is mostly Brownian.

12. Conclusions
We have presented the rheological and optical properties of a dilute suspension of

bead–rod chains in two model linear flows: simple shear and uniaxial extensional flow,
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where the dimensionless flow strengths were characterized by a simulated Weissenberg
number. Due to the rigid constraints, a mid-point algorithm was used which is
consistent with the Stratonovich interpretation of the Brownian forces. The Giesekus
form of the stress tensor was used for all steady-state simulations. We developed
a modified form of the Kramers–Kirkwood stress tensor that is consistent with
the Stratonovich interpretation of the Brownian forces and filters out O(δt−1/2)
fluctuations. In addition we developed a method to explicitly calculate the Brownian
and viscous contributions to the stress tensor.

The characteristic long-time chain relaxation of initially straight chains calculated
from the birefringence and stress decay both scale with N2 and are equal to within
the error of the simulations. The stress-optic coefficient at long times was shown to
be constant and converged to 0.2 as N increased. The short-time birefringence decay
is linear in time and exactly corresponds to the independent rotation of the N − 1
connecting rods.

In simple shear flow the chains displayed distinct dynamics for three separate
ranges of Wi. For small Wi, the viscous contribution to the shear viscosity is linear in
N and an analytic expression was developed which predicted the correct scaling and
magnitude of the viscosity. For moderate Wi, the polymer viscosity and first normal
stress coefficient show power-law behaviour and collapse onto universal curves when
plotted versus Wi. A power law for the polymer viscosity and first normal stress
coefficient was derived by balancing the shear flow forces with the entropic Brownian
forces. The thinning of the polymer viscosity and first normal stress coefficient at
moderate Wi is found to be almost entirely due to the Brownian contributions, while
the viscous contributions are relatively constant until large Wi where they showed a
slight increase before thinning.

Using kinetic theory, integrals were derived for the total, viscous and Brownian
viscosity of trumbells in steady extensional flow. The integrals were evaluated nu-
merically and the results agreed very well with our Brownian dynamics simulations.
For larger chains, we found that the initial increase in the extensional viscosity with
increasing Wi is mostly Brownian. At large Wi the Brownian stresses plateaued to
an O(N3) value which was in agreement with an analytic expression we developed for
the Brownian stress in a straight bead–rod chain. Using scaling arguments we found
that the Brownian and viscous contributions to the extensional viscosity were equal
at a relatively large Wi (Wi ≈ 0.06N2) in agreement with our simulations.

For small Wi (Wi 6 3) the stress-optic coefficient calculated using the shear
viscosity, first normal stress coefficient and extensional viscosity had the relatively
constant value of 0.2 in accord with the value obtained from the chain relaxation
simulations. The stress-optic coefficient begins to decrease at moderate Wi due to
large Brownian stresses which arise from the correlated orientations of the links. It
continues to decrease at high Wi because the viscous stresses become large.

We compared simulations of a 100-bead chain to Brownian dynamics of FENE
dumbbells where the FENE parameters were chosen to be consistent with the 100-
bead chain. The FENE dumbbell was able to qualitatively and to some degree
quantitatively predict the more complex bead–rod model for Wi < 100. For larger
Wi additional viscous stresses must be incorporated into the FENE stress tensor to
mimic a bead–rod chain.

Lastly, we are currently performing simulations of bead–rod chains in transient
strong flows. We shall use these to investigate correlations in the radius-of-gyration
tensor with the associated viscous and Brownian stresses for subsequent incorporation
into a dumbbell model for the rheology of such solutions.
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Appendix
In §10 we presented the extensional viscosity and the Brownian and viscous com-

ponents for N = 3, a trumbell, in steady extensional flow. In this Appendix we show
the integrals used to obtain our numerical results. The problem formulation follows
the notation and method of Hassager (1974) and for further details the reader should
refer to that work.

The dimensionless viscous tensions for a trumbell in extensional flow are

T 1 =

(
u2
i u

2
j u

1
ku

2
k + 0.5u1

i u
1
j

)
Pe(δi1δj1 − 0.5δi2δj2 − 0.5δi3δj3)

2− 0.5u1
nu

2
nu

1
l u

2
l

, (A 1)

T 2 = 0.5u2
i u

2
j Pe(δi1δj1 − 0.5δi2δj2 − 0.5δi3δj3) + 0.5T 1u1

ku
2
k. (A 2)

The viscous contribution to the polymer extensional viscosity is then

ηp,visc =
(
δi3δj3 − δi1δj1

) (
R1
i T

1u1
j + R2

i (T
2u2
j − T 1u1

j )− R3
i T

2u2
j

)
/Pe, (A 3)

and using equations (5.12) and (10.2) the polymer contribution to the extensional
viscosity is

ηp =

3∑
ν=1

(
Rν1R

ν
1 + 0.5Rν3R

ν
3

)
. (A 4)

The Brownian contribution is just the difference ηp − ηp,visc.
The steady-state distribution function for the chain in extensional flow is a function

of φ and C which are well known for a trumbell (Bird et al. 1978):

φ = 1
2
Pe(δi1δj1 − 0.5δi2δj2 − 0.5δi3δj3)

3∑
ν=1

Rνi R
ν
j , (A 5)

C = c1 sin2 χ sin2 β(1− 0.25 cos2 χ), (A 6)

where c1 is a normalization constant, while χ and β are two angles associated with
the trumbell’s generalized coordinates (Hirschfielder, Curtiss & Bird 1964). Lastly, the
bead positions must be converted into the generalized coordinates. The coordinate
transformation is straightforward and can be found in Hassager (1974).

The average total polymer viscosity and viscous contribution are then given by the
following integrals:

〈ηp〉 =

∫ 2π

α=0

∫ π

β=0

∫ 2π

γ=0

∫ π

χ=0

ηp eφ C1/2 dχdγdβdα∫ 2π

α=0

∫ π

β=0

∫ 2π

γ=0

∫ π

χ=0

eφ C1/2 dχdγdβdα

, (A 7)

〈ηp,visc〉 =

∫ 2π

α=0

∫ π

β=0

∫ 2π

γ=0

∫ π

χ=0

ηp,visc eφ C1/2 dχdγdβdα∫ 2π

α=0

∫ π

β=0

∫ 2π

γ=0

∫ π

χ=0

eφ C1/2 dχdγdβdα

. (A 8)

The integrals were evaluated using a standard mid-point algorithm.
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